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Flow-driven opening of a valvular leaflet
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The understanding of valvular opening is a central issue in cardiac flows, whose
analysis is often prohibited by the unavailability of (in vivo) data about tissue
properties. Asymptotic or approximate representations of fluid–structure interaction
are thus sought. The dynamics of an accelerated stream, in a two-dimensional channel
initially closed by a rigid inertialess movable leaflet, is studied as a simple model
problem aimed at demonstrating the main phenomena contributing to the fluid–
structure interaction. The problem is solved by the coupled numerical solution of
equations for the flow and solid. The results show that the leaflet initially opens in a
no-shedding regime, driven by fluid mass conservation and a predictable dynamics.
Then the leaflet motion jumps, after the saturation of a very rapid intermediate
vortex-shedding phase, to the asymptotic slower regime with a stable self-similar
wake structure.

1. Introduction
The interaction between a fluid stream and a moving boundary is common in

several contexts; numerous examples can be found in the cardiovascular system
where flows inside deformable vessels and through cardiac valves are of primary
physiological relevance. The original motivation for this work is our interest in the
flow through the mitral valve that controls the blood motion from the left atrium
to the left ventricle of the heart. More generally, similar phenomena can be found
in technological devices when valves are used to control the fluid motion through
orifices and possibly to avoid back-flow. Despite the applied background this work is
a theoretical one, on the interaction of the flow and a leaflet under ideal conditions.
It represents a step towards the understanding of phenomena in a fluid-structure
interaction of potentially high applied relevance.

When a closed valve is forced to open by a stream, the (typically thin) leaflets rapidly
move with the fluid with only a weak resistance to it. A rigorous mathematical model
of the flow–structure dynamics should be based on the fluid and solid equations, for
the flow and the tissue, respectively, and on the proper coupling relations. Along these
lines, a simplified approach, developed for a thin solid without bending stiffness, was
introduced by Peskin & McQueen (1989). However, in our experience, the numerical
implementation of this mathematically attractive model has several disadvantages,
such as the lack of resolution close to the body and unrealistic stress distributions
on it. A major difficulty in studying the fluid–solid interaction is the rapidity of the
leaflet response to the action of the incoming fluid, and its large movement within
the flow domain. A complete numerical solution of the fluid-solid system has been
presented for the flow in models of the aortic valve (De Hart et al. 2003; Stijnen et al.
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2004). These remarkable studies introduced an accurate coupling strategy within a
finite element solution method.

In addition to these difficulties, the development of a well-posed mathematical
model must account for large deformations, in the nonlinear regime, of the valvular
visco-elastic solid elements. However, little is known about the material parameters
of biological elements like cardiac valve leaflets, principally because such quantities
are not accessible in vivo. They are typically non-homogeneous and non-isotropic,
differing between individual people and in a single person with aging. A homogeneous
and isotropic Neo-Hookian elastic approximation for the aortic valve was employed
in De Hart et al. (2003), and a linearly elastic leaflet in Stijnen et al. (2004). In
general, the valve behaviour and its parameters are unknown and difficult to assess in
physiological applications (Stevens et al. 2003). Therefore, the realistic reproduction
of the fluid dynamics in the presence of biological leaflets still appears an ambitious
objective.

It has been noted that the interaction between valves and accelerating flows is
modified in specific cardiovascular diseases (Handke et al. 2003, for example, and
references therein) but, despite the potential implications of the topic, little is known
about the mechanics involved. Some studies have focused on the fluid dynamics
only, avoiding a detailed description of the solid properties using ad hoc boundary
conditions (Baccani, Domenichini & Pedrizzetti 2003), or assuming a held-open mitral
valve when studying left ventricular fluid dynamics (Lemmon & Yoganathan 2000;
Domenichini, Pedrizzetti & Baccani 2005). Some progress has been achieved with
lumped-parameter models (Szabo et al. 2004, and references therein) that are aimed
at reproducing specific measurements, based on a number of model parameters,
and are not intended to explain the corresponding vorticity dynamics. A different
approach, to overcome the difficulties found when describing the solid properties, was
considered by Pedrizzetti (2005) with a derivation of the leaflet motion based on fluid
dynamical concepts only. That work showed that, in the limiting case of vanishing
viscosity, the assumption of absence of shedding from the leaflet trailing edge (Kutta
condition) leads to a characteristic relation between the leaflet angular velocity and
the velocity of the incoming stream, which applies well to the viscous case also.
However, the dynamical meaning of such an assumption remained unknown.

The aim of this work is to contribute to the understanding of the flow-driven
opening of valvular leaflets when material parameters are not readily accessible. This
study, although originated from a physiological interest, is a theoretical one and aims
to uncover general behaviours in an ideal system. It considers the interaction between
the flow in a two-dimensional channel and a leaflet that is rigid and inertialess, when
the valve opening is driven by the fluid only without additional viscoelastic resistance.
This is a basic model, simple enough to be analysed thoroughly, that contains the
main general features, or their asymptotic limit, of many transvalvular flows. On the
other side, such a simple model does not contain features like the flexible structure
of the leaflet or the three-dimensionality, which could play fundamental roles.

2. Mathematical formulation
Consider the viscous flow in a two-dimensional rectilinear channel with half-width

H , due to an accelerating discharge whose section-averaged velocity starts from zero
at time zero and reaches a peak value Vp at time T . The channel is initially closed
by the leaflet, which then opens with the flow. Taking H and Vp as scales for length
and velocity, respectively, the dimensionless problem is characterized by the peak
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Figure 1. Sketch of the physical problem.

Reynolds number Re = VpH/ν, where ν is the kinematic viscosity, and the Strouhal
number St = H/VpT . For convenience, the dimensionless time is further normalized
by multiplication with St , so that the time-law of the dimensionless discharge V (t)
has V (1) = 1.

The fluid dynamics is governed by the two-dimensional Navier–Stokes and
continuity equations written in the vorticity–streamfunction (ω, ψ) formulation
(Roache 1998)

St
∂ω

∂t
+

∂ψ

∂y

∂ω

∂x
− ∂ψ
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1

Re
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∇2ψ = −ω. (2.2)

A rectilinear leaflet of infinitesimal thickness and of unitary (dimensionless) length
is hinged on the lower wall, corresponding to the origin of the system of coordinates
(x, y) that describes the flow domain, figure 1. The leaflet can rotate clockwise,
its motion being specified by the angle θ(t), so that when θ = π/2 the channel is
completely closed, and when θ =0 the plate lies on the lower channel wall. The
system of equations (2.1), (2.2) is completed by the boundary conditions. At the wall
y = 0 the no-slip conditions vx = vy = 0 are imposed and ψ = 0; the centreline y =1
is a symmetry line where ψ = V (t). At x = ±∞ uniform flows are assumed. On the
moving leaflet, the no-slip condition gives vr = 0 and vn = −rSt θ̇ , where vr and vn are
the components of the velocity tangential and normal to the leaflet, respectively, r is
the distance from the origin, and θ̇ =dθ/dt , on the leaflet ψ = −Stθ̇r2/2. The flow
starts from rest at t = 0, when θ = π/2.

The formulation still requires the definition of the dynamical equation for the solid.
The leaflet is infinitely rigid and can rotate about the ideal hinge at x = 0 without
any elastic or viscous resistance other than that due to the flow action. Therefore,
the unique equation for the solid element is the balance of angular momentum, i.e.
T = 0, T being the torque acting on the body. Writing the Navier–Stokes equations
in terms of primitive variables on the fore and rear faces of the leaflet, the tangential
balance gives
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where the subscripts r and f stand for rear and fore, respectively, and the torque T
acting on the valve is
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After replacing the integrals in (2.4) using the equality between
∫ 1

0
f (s)

∫ 1

s
g(r) dr ds

and
∫ 1

0
g(s)

∫ s

0
f (r) dr ds, the leaflet zero-torque equation is finally rewritten as
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Equation (2.5) must be solved with (2.1), (2.2) to specify the motion of the solid
element.

3. Numerical method
The problem defined in § 2 has been solved numerically. Equations (2.1), (2.2)

are made discrete on a regular Cartesian grid with standard second-order centred
finite differences. The moving leaflet is accounted for using a (ω, ψ) version of the
immersed boundary method (Fadlun et al. 2000; Pedrizzetti 2005), where the grid
points near the plate are handled with particular care. At each time step, a variable
numbers of fictitious points are added, corresponding to the intersection of the leaflet
with the computational grid, say (xb(rb, t), yb(rb, t)) = (rb cos θ(t), rb sin θ(t)). At these
points, the streamfunction and its derivatives are known, that is ψb = −Stθ̇r2

b /2,
∂ψ/∂r |b = −Stθ̇rb, and ∂ψ/∂n|b = 0. Whereas the streamfunction is continuous across
the leaflet, the vorticity field is discontinuous and different values for the fore and
rear faces, ωbf and ωbr , are considered.

During the advancement of (2.1), the vorticity values at the leaflet are used to evolve
the value of ω at the points of the computational grid next to the valve in order
to avoid the computation of any derivatives across the leaflet. Once vorticity ω has
been updated at the inner points of the domain using (2.1), the streamfunction ψ is
computed solving the discrete version of (2.2), a linear system, and forcing the known
boundary conditions. At the same time, (2.5) is used to compute the leaflet motion as
an additional linear equation in (2.2) including the additional unknown θ̇ , as follows:
The discretization of the normal derivative in (2.5) gives a linear combination of the
vorticity values at the wall and inside the flow field. When solving (2.2), the values
of vorticity inside the integration domain are known and thus enter as known terms;
however, the wall vorticity is expressed in terms of ψ close to and at the wall, the
latter being proportional to θ̇ . Thus (2.5) can be recast in terms of known values of ω,
unknown values of ψ , and the additional unknown θ̇ , similarly to what has been done
in different contexts (Pedrizzetti & Domenichini 1997; Pedrizzetti 1998). The value of
θ̇ is then used to advance in time the leaflet position together with (2.1) for the flow
field. The vorticity at the leaflet surfaces is computed from the known streamfunction
field: (2.2) is evaluated at the boundary using a formal Taylor expansion in the x-
and y-directions to estimate the second derivatives at the wall, similarly to what is
done at the y = 0 wall (Roache 1998).

The solution has been obtained with a domain of finite length in the x-direction
at the boundary of which a zero second x-derivative condition is imposed on both
ω and ψ . Typically, the computational domain extends from x = −1 to x = 6; tests
have been made to ensure that the flow near the valve and the valvular motion are
independent of the domain extent. The number of grid points in the y-direction has
been set to Ny = 128 and the same grid spacing has been used in the x-direction.
The sensitivity to the resolution has been checked varying Ny from 32 to 192; the
solution is shown to converge for Ny � 96. The results shown here are thus evaluated
with a grid of 896 × 128. The time advancement is performed with a second-order
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Figure 2. Streamlines and vorticity field, St =0.1, Re= 103; (a) t= 18/128, (b) t = 36/128,
(c) t = 54/128, (d) t =90/128. Streamfunction values (light grey) are equally spaced between
their minimum value and V (t). Vorticity levels: (a) from −10 to 10, step 0.5; (b–d) from −100
to 100, step 5. Black and grey lines (see enlarged view in (a)) correspond to negative and
positive values, respectively.

Adams–Bashforth method and time step chosen to satisfy the convective and viscous
stability criteria (Roache 1998).

4. Results
The problem is first studied at Re =1000 and St = 0.1 using the temporal law

V (t) = (1 − cos(πt))/2. Then, the temporal law V (t) and parameters are varied to
show how the results are influenced by them. These reference values have been
selected to be representative of a normal mitral flow (remember that the period T

considered here is the accelerating phase of the early ventricular diastole that is
about 1/10 of the heartbeat). This relatively small value for the Reynolds number is
representative for children and is selected for consistency with the two-dimensional
approximation. However, the analogy of this ideal model with actual cardiac flows
should not be taken further.

In figure 2 the flow evolution is reported at different instants of time in terms of
instantaneous streamlines and vorticity distribution. Initially, the valve opens quickly
and the flow is mainly irrotational with weak boundary layers of negative (clockwise,
corresponding to black lines in figure) vorticity that develop on both sides of the
leaflet, see figure 2(a) at t = 18/128. No evident shedding is found and, instead, during
the very initial phase some positive (counterclockwise, grey in figure 2a inset) vorticity
close to the leaflet edge is seen. Then, the upstream boundary layer begins to separate
from the trailing edge, figure 2(b) at t = 36/128, and then rolls up to form an attached
vortex. The subsequent evolution is characterized by the growth of the shed vortex,
which becomes the head of a vortex jet, figure 2(c) at t =54/128. The fully developed
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Figure 3. Time evolution of θ/π, Re= 103. From left to right at the top of the figure
(θ ≈ 0.4π) cases 4, 5, 2, 1, 3, 6, 7, 8; odd cases are continuous lines, even are dashed.

wake takes the form of an elongated vortex sheet originating from the trailing edge,
occasionally with the appearance of local Kelvin–Helmholtz roll-up, figure 2(d) at
t = 90/128.

In order to show how the dynamics are influenced by the specific type of accelerating
profile, the same simulation has been performed but halving and doubling the Strouhal
number to St = 0.05 and St = 0.2, cases 2 and 3, respectively. Other solutions have
then been considered by replacing V (t) with power laws t1/2, t , t2, t4, t6, cases 4 to
8. The simulations have been performed to t = 1. In all the cases the evolution is
qualitatively similar, although the timing of events varies with the flow acceleration.
The leaflet dynamics are shown in figure 3 in terms of the time profiles θ(t). All the
curves show an initial opening up to θ ≈ 0.4π, where a sudden change of the slope is
noticeable. This corresponds to the roll-up, saturation, and detachment of the shed
vortex that marks the transition to a slower opening, when the wakes take the shape
of an elongated vortex sheet.

The simplicity of the model problem allows one to extract some similarity informa-
tion from dimensional analysis arguments: the functional dependence of the instant-
aneous variation of the leaflet angle can be expressed in dimensional terms as

dθ

dt∗ = F(θ, H, V ∗(t∗), ν), (4.1)

where the superscript ∗ indicates dimensional quantities. Using the instantaneous
velocity V ∗ = VpV (t) as the appropriate scale for instantaneous variations,
equation (4.1) is rewritten in our standard dimensionless terms as

St
θ̇(t)

V (t)
= F(θ, Ret ), (4.2)

where Ret = V (t)Re is the instantaneous Reynolds number. The functional
dependence (4.2) is analysed in figure 4 by plotting Stθ̇/V versus θ for the 8 cases
with the same peak Reynolds number Re= 1000. The profiles show a common
behaviour during the initial phase, θ � π/2, that corresponds to the early leaflet
opening. Then the curves separate during their rapid rise, the rapid deceleration that
corresponds to the change of slope in θ(t), and converge again, at lower velocity,
toward an approximately common behaviour asymtotic to θ̇/V =0 when θ = 0. The
curves in figure 4 indicate a weak dependence on the instantaneous Reynolds number
during the intermediate period of the evolution.

In general, the dynamics of the leaflet can be classified into three phases as follows.
During the initial stage, when the channel is almost closed, θ � π/2, the flow presents
an almost absence of shedding from the leaflet, whose motion is dominated by the
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Figure 4. Stθ̇/V versus θ/π, Re =103, all cases. Odd cases are continuous lines,
even are dashed.
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Figure 5. (a) Sketch of the mass balance (4.3). (b) Computed θ versus θK predicted with (4.4).
Cases (1–4) black lines: continuous, dashed, dotted, dash-dotted, respectively. Cases (5–8) grey
lines: continuous, dashed, dotted, dash-dotted, respectively.

mass balance. In this no-shedding regime the valve moves with the fluid to satisfy
continuity, given the limited free opening above it. Mass conservation applied to the
shadowed area in figure 5(a) can be written as

Vjet (1 − sin θ) − Stθ̇/2 = V, (4.3)

where Vjet is the average x-velocity of the jet exiting from the open part of the channel.
The condition of no shedding corresponds to the absence of the component around
the edge of the relative velocity between the flow and the leaflet. This condition can be
written Vjet sin θ = −Stθ̇ , which represents an approximation of the Kutta condition
using the average velocity Vjet ; it was shown in Pedrizzetti (2005) that for θ � π/2
this approximation does not differ significantly from the same condition evaluated
with the local irrotational velocity. Insertion of this relation into the mass balance
(4.3) gives

Stθ̇ =
2V sin θ

sin θ − 2
. (4.4)

Formula (4.4) allows one to compute the initial time evolution of θ(t) with a
straightforward time integration. In figure 5(b) we show the comparison between
the computed θ(t) and θK (t) estimated with the Kutta condition (4.4), showing its
good predictive capability until θ ≈ 0.4π.
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Figure 6. Stθ̇/V versus τG, Re =103, all cases. Odd cases are continuous lines,
even are dashed.

In the second phase of the evolution, the rigid leaflet offers resistance to the flow
and induces vortex shedding from the trailing edge. During this roll-up regime the shed
vorticity increases the pressure on the downstream side of the leaflet and decelerates
its motion, giving rise to a well-developed vortex roll-up. The attached vortex moves
faster than the leaflet edge and eventually detaches to become an elongated (multiple)
vortex wake. This phenomenon is analogous to that studied in Gharib, Rambod &
Shariff (1998) and Dabiri & Gharib (2005) in the different context of flows separating
from a circular nozzle. They showed that the wake transition from an attached
rolling-up leading vortex to a fully developed wake structure can be described by
the critical value of a dimensionless parameter, which they call formation time. In the
present context, the formation time is defined

τG(t) = St−1

∫ t

t0

�v(s) ds, (4.5)

where �v = Vjet +Stθ̇ sin θ is the relative velocity in the direction of vortex elongation;
t0 is the start time of the vortex formation, which means that the integral (4.5) is
evaluated only during the period when �v > 0. The behaviour of Stθ̇/V previously
plotted in figure 4 is now replotted in figure 6 in terms of the formation time τG.
All the curves now present a unique timing of the events in terms of the formation
time. The scaled angular velocity of the leaflet has a maximum at τG ≈ 0.7. This
corresponds to the instant when the leading vortex detaches from the edge, and it
can be considered as the limiting value of τG that characterizes the transition from
a single to multiple-vortex structure in the present context. Subsequently, the leaflet
angular velocity is weakly reduced until reaching a following minimum, at τG ≈ 1.4,
that precedes the final asymptotic decelerating profile.

The third and final phase of leaflet motion is characterized by the development
of a fairly stable wake structure when the vortex has become the head of a vortex
sheet leaving the trailing edge. During this vortex-sheet regime the flow below the
sheet is almost stagnating (see figure 2c, d), with a pressure higher than in the jet
zone, and the valve moves very slowly. The angular velocity of the leaflet θ̇ depends
primarily on the stream velocity and on the position θ (see figure 4 for θ < 0.3π) with
a weak dependence on the Reynolds number. The functional relation (4.2) takes the
asymptotic form

Stθ̇ = −V κ(Re)

(
θ

π

)α(Re)

, (4.6)

where α > 1. The curve fitting values κ ≈ π/2 and α ≈ 1.24 approximate well all
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Figure 7. Comparison between θ computed and obtained with (4.4), dashed lines, and with
(4.6), continuous lines. Case 4 (◦), case 5 (×), case 5 (+) with Re= 2000.

the cases with Re =1000; other simulations at Re= 2000 give κ ≈ 1 and α ≈ 1.1 in
agreement with the weak Reynolds number dependence, at least for the analysed
cases. The quality of the self-similar behaviour has been verified in terms of θ(t) by
backward time integration of (4.6) using the known final value θ(1) as a starting
condition. Illustrative results are reported in figure 7, showing that the eventual
asymptotic profile is represented well by the self-similar behaviour, and that the
second phase represents a rapid transition between the no-shedding and the vortex-
sheet regimes.

5. Conclusions
The flow-driven opening of a rectilinear rigid inertialess leaflet in a two-dimensional

channel has been studied via numerical solution of the governing equations. The
standard numerical technique has been completed by a (ω, ψ) version of the immersed
elements method in combination with a fluid–structure coupling technique.

The results have shown that the valve opening follows a sequence of three phases
associated with specific fluid dynamics phenomena. In a first stage, the valve opens
quickly without significant shedding. The leaflet motion is driven by mass conservation
that, when associated with the Kutta condition at the trailing edge, gives predictable
initial dynamics. During the second short phase the leaflet undergoes a significant
deceleration; the formation, growth, and ejection of a primary vortex from the
trailing valvular edge are the dominant features during this period. The timing of
vortex shedding events can be described in terms of a modified formation time,
previously introduced in different contexts (Gharib et al. 1998; Dabiri & Gharib
2005) that appears to properly address the vortex saturation phenomenon in this
case, too. On the other hand the concept of formation time cannot be used to predict
the leaflet dynamics because, in its direct evaluation form, it depends implicitly on the
solution itself. The final phase is associated with the presence of a stable vortex-sheet
wake and slow leaflet motion. The functional relation between valvular dynamics and
fluid parameters is identified by dimensional arguments, tending asymptotically to be
self-similar.

The coupled fluid–solid interaction is a central issue in several problems; it is typical
in the flow crossing cardiac valves, the complete modeling of which still represents
a prohibitive task, primarily because of the difficulty in collecting data about the
characteristics of the solid. These obstacles can be partially overcome by developing
models with potential predictive capability, in some asymptotic or approximate limit,
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avoiding the need to describe material properties that are typically unavailable in
biological applications. The ideal model employed here, with rigid fixed boundaries,
unlimited domain, and symmetric two-dimensional flow, represents a first contribution
along these lines, although the results should not be applied as such to any realistic
physiological valve.

The valvular opening is found to be described by an initial no-shedding concept that
jumps, through a very rapid intermediate phase, to an asymptotic self-similar beha-
viour, which appears consistent with varying the flow parameters. The understanding
of these regimes is a preliminary starting point for the critical interpretation of
results, or, for methodological extensions, for the more complex problems of three-
dimensional flow through cardiac valves.

The work has been partially supported by Italian MIUR under the grant No. PRIN
2004089599.
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